Eine Publikation des Dr. Harnisch Verlags

    • de
  • Anzeigen
  • Hydrogen Dialogue
  • Anzeigen
  • Hydrogen Dialogue
  • GET - GREEN EFFICIENT TECHNOLOGIES

    Unabhängige Medienplattform für Energie­versorgung, Effizienzsteigerung und alternative Energieträger und -speicher.

    Aktuelle Ausgabe – ENGLISCH

    Diese Fachzeitschrift wird als E-Paper mit interaktiven Inhalten angeboten.

    Aktuelle Ausgabe – DEUTSCH
    Biokatalysatoren effizienter nutzen

    Strom aus biologischen Solarzellen

    Anzeigen
    • hy-fcell 2024
    • Netzsch - Proven Excellence
    • FILTECH 2024
  • Mit Sonnenlicht Wasserstoff herstellen

    Biologische Katalysatoren, sogenannte Enzyme, bestimmen längst unseren Alltag. Sie werden beispielsweise als Zusätze in Waschmitteln verwendet, sie veredeln Lebensmittel oder werden in großtechnischen Prozessen eingesetzt, um Medikamente oder Rohstoffe für die chemische Industrie zu produzieren. Im Vergleich zu chemischen Katalysatoren haben sie den Vorteil, dass sie nur mit ganz bestimmten Ausgangstoffen reagieren und daher sehr spezifische Produkte herstellen. Zudem basieren biologische Katalysatoren niemals auf Edelmetallen oder anderen selten Rohstoffen. „In der Natur haben sich immer Lösungen durchgesetzt, die nicht durch die Verfügbarkeit von Rohstoffen limitiert sind“, sagt Prof. Dr. Marc Nowaczyk, Leiter des Lehrstuhls für Biochemie an der Universität Rostock und Ko-Autor der Studie, der Teile der Arbeiten an der Ruhr-Universität Bochum im Rahmen der Graduiertenschule Microbial Substrate Conversion, kurz MiCon, angefertigt hat.

    Aber kann man biologische Katalysatoren auch zur Energiegewinnung nutzen, um zum Beispiel mit Sonnenlicht Wasserstoff herzustellen? Auch hierzu liefert die Natur mit dem Prozess der Fotosynthese eine Blaupause. So gut wie alles Leben ist direkt oder indirekt von der Umwandlung von Lichtenergie durch Pflanzen, Algen oder bestimmte Bakterien abhängig, die aus dem Kohlenstoffdioxid der Atmosphäre Biomasse herstellen. Genauer: Bei der Fotosynthese werden durch die Umwandlung von Kohlenstoffdioxid und Wasser mithilfe von Lichtzufuhr Zuckermoleküle und Sauerstoff erzeugt. Auch sämtliche fossile Energieträger wie Kohle, Öl oder Gas basieren letztendlich auf der Energieumwandlung durch fotosynthetische Organismen. Das Team um Marc Nowaczyk untersucht die molekularen Grundlagen der Fotosynthese und versucht auf dieser Basis biologische Lösungen zur Umwandlung und Speicherung von Energie zu konzipieren. „Wir wollen in einem interdisziplinären Ansatz beispielsweise Hybridsysteme entwickeln, die mithilfe biologischer Katalysatoren und Lichtenergie Wasserstoff als Energieträger produzieren“, erklärt Marc Nowaczyk.

    Forschung bringt Überraschungen

    Voraussetzung dafür ist jedoch ein genaues Verständnis der Funktionsweise der an der Fotosynthese beteiligten Biokatalysatoren, die sogenannten Fotosysteme. Dass dies Überraschungen mit sich bringen kann, zeigt die vorliegende Studie. Bisher war man davon ausgegangen, dass die Fotosysteme durch ihr Konstruktionsprinzip zwangsläufig hohe Energieverluste aufweisen müssten. Während die ersten Schritte der Energieumwandlung noch hocheffizient sind (bis zu 99 Prozent), geht ein Großteil der Energie bereits auf der Ebene der Fotosysteme durch den Transport von Elektronen verloren (etwa 60 Prozent Energieverlust). Dadurch liegt am Ende des Prozesses, je nach Organismus, weniger als ein Prozent der ursprünglichen Lichtenergie chemisch gebunden vor.

    In der vorliegenden Studie konnten die Forschendenjedoch zeigen, dass die hohen Verluste prinzipiell vermieden werden könnten. Sie wiesen mit ultraschneller Spektroskopie nach, dass bestimmte synthetische Mediatoren – kleine chemische Vermittlermoleküle – Elektronen zu einem viel früheren Zeitpunkt aus den Fotosystemen abgreifen können als bisher gedacht. „Unsere Ergebnisse ermöglichen völlig neue Konzepte für das Design von biologischen Solarzellen, wodurch sich – zumindest theoretisch – die Effizienz deutlich verbessern ließe“, so Marc Nowaczyk. „Bis dies tatsächlich in der Praxis Anwendung finden wird, ist es aber noch ein längerer Weg und erfordert weitere Forschung“, ergänzt er abschließend.

    Förderung
    Die Arbeiten wurden gefördert durch den Biotechnology and Biological Sciences Research Council, die Europäische Union und die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Graduiertenkollegs GRK2341 “Microbial substrate conversion (MiCon)“.

    Originalveröffentlichung
    Tomi Baikie, Laura Wey, Joshua Lawrence, Hitesh Medipally, Erwin Reisner, Marc Nowaczyk, Richard Friend, Christopher Howe, Christoph Schnedermann, Akshay Rao, Jenny Zhang: Photosynthesis re-wired on the pico-second timescale, in: Nature, 2023, DOI: 10.1038/s41586-023-05763-9. https://www.nature.com/articles/s41586-023-05763-9

    Zur englischen Pressemitteilung der University of Cambridge: https://www.cam.ac.uk/stories/hacking-photosynthesis

    Kontakt
    Prof. Dr. Marc Nowaczyk
    Lehrstuhl für Biochemie
    Institut für Biowissenschaften
    Universität Rostock
    Tel.: +49 381 498 6130
    marc.nowaczyk@uni-rostock.de

    Nutzen Sie die Vorzüge eines Abonnements:
    Abonnieren Sie unsere Fachzeitschriften und Magazine bequem online und wir senden Ihnen bereits die nächste Ausgabe druckfrisch zu.

    Leseexemplar anfordern

    Unsere Magazin-App:

    Diese Magazine könnten Sie auch interessieren:

    Copyright 2024 by Dr. Harnisch Verlag